SURVEILLANCE DE LA CONSOMMATION DES ANTIBIOTIQUES ET DE LA RÉSISTANCE BACTÉRIENNE

DANS LES ÉTABLISSEMENTS DE SANTÉ EN 2020

Méthodologie nationale 2021

Janvier 2021
Obligation réglementaire concernant les données à caractère personnel recueillies dans le cadre de la surveillance de la mission SPARES

Pour tout établissement souhaitant participer à la surveillance, il est indispensable d’envoyer par voie postale la charte d’engagement (ou disponible à l’adresse : www.cpias-grand-est.fr/index.php/spares-surveillance) complétée et signée au :

CPias Grand Est (inscription SPARES-ConsoRes)
CHRU de Nancy - Hôpitaux de Brabois
Rue du Morvan
54511 Vandœuvre-lès-Nancy

La charte est valable 5 années. Si vous avez déjà retourné le document au CPias Grand Est, il n’est pas nécessaire d’envoyer à nouveau ce document.
Mission nationale « SPARES »
Surveillance et Prévention de l’AntibioRésistance en Etablissement de Santé

Depuis avril 2018, la mission nationale **de surveillance et de prévention de l’antibiorésistance en établissement de santé** (mission SPARES) a été confiée par Santé Publique France au CPIas Grand Est associé au CPIas Nouvelle Aquitaine.

Composition de l’équipe

CPIas Grand Est : Olivia Ali-Brandmeyer, Julien Claver, Lory Dugravot, Amélie Jouzeau, Florence Lieutier, Loïc Simon (responsable de la mission)

CPIas Nouvelle-Aquitaine : site de Bordeaux : Catherine Dumartin, Muriel Péfau, Emmanuelle Reyreaud et site de Limoges : Aurélie Chabaud, Elodie Couvé-Deacon, Christian Martin, Marie-Cécile Ploy

Conseillers scientifiques

Christian Rabaud (CPIas Grand Est), Anne-Marie Rogues (CHU de Bordeaux)

Comité scientifique

Patrick Plésiat, Richard Bonnet, Centres nationaux de référence (CNR) de la résistance aux antibiotiques

Rémi Gauzit, Société de pathologie infectieuse de langue française (Spilf)

Gérard Lina, Société française de microbiologie (SFM)

Olivia Keita-Perse, Société française d’hygiène hospitalière (SF2H)

Hà Do Thi Chalamette, Société française de pharmacie clinique (SFPC)

François L’Héritéau, CPIas Ile de France

Patricia Le Gonidec, Omédit Ile de France

Evelyne Jean, chargée de mission antibiorésistance ARS PACA

Laetitia May-Michelangeli, Meriem Bejaoui, Haute Autorité de Santé (HAS)

Anne Berger-Carbonne, Mélanie Colomb-Cotinat, Sylvie Maugat, Philippe Cavalié, Santé Publique France (SPF)

Jocelyne Caillon, mission nationale Surveillance et prévention de la Résistance aux ATB et des IAS en soins de ville et en secteur médico-social (PRIMO)

Informations sur la méthode et l’outil : www.club-consores.fr

Contact

- Méthodologie Consommation des antibiotiques : catherine.dumartin@chu-bordeaux.fr et muriel.pefau@chu-bordeaux.fr / 05.56.79.60.58
- Méthodologie Résistance bactérienne : aurelie.chabaud@chu-limoges.fr / 05.19.76.18.53
- Outil ConsoRes : consores@chru-nancy.fr / 03.83.15.55.88
Tables des matières

Nouveautés 2021 et rappel de l’évolution des surveillances nationales ... 8

I. Contexte des surveillances nationales .. 9

II. Objectifs .. 11

II.1. Surveillance de la consommation des antibiotiques .. 11

II.2. Surveillance de la résistance bactérienne aux antibiotiques .. 11

III. Méthode .. 12

III.1. Période de surveillance .. 12

III.2. Etablissements inclus dans la surveillance ... 12

III.3. Etablissements exclus de la surveillance ... 12

III.4. Activités inclues dans la surveillance ... 12

III.5. Activités exclues de la surveillance ... 13

III.6. Dédoublonnage des données de résistance bactérienne aux antibiotiques .. 13

Définition .. 13

Règles de dédoublonnage .. 14

IV. Recueil et intégration des données .. 14

IV.1. Données administratives .. 14

IV.2. Structure de l’établissement ... 15

IV.3. Données d’activité ... 15

IV.4. Données de consommation d’antibiotiques ... 16

IV.5. Données de résistance bactérienne aux antibiotiques .. 17

V. Analyse et diffusion des résultats .. 18

V.1. Traitement des données ... 18

V.2. Analyses locales : rapports automatique et personnalisé .. 19

Rapport automatique ... 19

Rapport personnalisé .. 19

V.3. Indicateurs régionaux ... 20

V.4. Indicateurs nationaux ... 20

V.5. Données européennes et internationales .. 20
Liste des annexes

Annexe 1 : Aide à l’utilisation des données de consommation d’antibiotiques et de résistances bactériennes .. 22
Annexe 2 : Type d’établissement inclus .. 26
Annexe 3 : Liste des doses définies journalières (DDJ) utilisées .. 27
Annexe 4 : Nature du prélèvement .. 29
Annexe 5 : Liste des espèces bactériennes recueillies .. 30
Annexe 6 : Dictionnaire des variables recueillies .. 32
Annexe 7 : Liste des indicateurs de résistance inclus dans le rapport automatique et modalités de calcul .. 33
Annexe 8 : Calendrier de la surveillance 2021 .. 35
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATB</td>
<td>Antibiotique</td>
</tr>
<tr>
<td>ARS</td>
<td>Agence Régionale de Santé</td>
</tr>
<tr>
<td>ATC</td>
<td>Anatomique Thérapeutique Chimique</td>
</tr>
<tr>
<td>BLSE</td>
<td>Bêta-Lactamase à Spectre Etendu</td>
</tr>
<tr>
<td>BMR</td>
<td>Bactérie Multi-Résistante</td>
</tr>
<tr>
<td>C3G</td>
<td>Céphalosporines de 3ème génération</td>
</tr>
<tr>
<td>CA-SFM</td>
<td>Comité de l’Antibiogramme de la Société Française de Microbiologie</td>
</tr>
<tr>
<td>CH</td>
<td>Centre Hospitalier</td>
</tr>
<tr>
<td>CHU</td>
<td>Centre Hospitalier Universitaire</td>
</tr>
<tr>
<td>CLCC</td>
<td>Centre de Lutte Contre le Cancer</td>
</tr>
<tr>
<td>CPIAS</td>
<td>Centre d’appui pour la Prévention des Infections Associées aux Soins</td>
</tr>
<tr>
<td>DDD</td>
<td>Defined Daily Dose</td>
</tr>
<tr>
<td>DDJ</td>
<td>Dose Définie Journalière</td>
</tr>
<tr>
<td>DE</td>
<td>Discipline d’Equipement</td>
</tr>
<tr>
<td>EARS-Net</td>
<td>European Antimicrobial Resistance Surveillance Network</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control</td>
</tr>
<tr>
<td>EHPAD</td>
<td>Etablissement d’Hébergement pour Personnes Agées Dépendantes</td>
</tr>
<tr>
<td>EPC</td>
<td>Entérobactérie Productrice de Carbapénémase</td>
</tr>
<tr>
<td>ERV</td>
<td>Entérocoque résistant à la Vancomycine</td>
</tr>
<tr>
<td>ES</td>
<td>Etablissement de Santé</td>
</tr>
<tr>
<td>ESAC-Net</td>
<td>European Surveillance of Antimicrobial Consumption Network</td>
</tr>
<tr>
<td>ESLD</td>
<td>Etablissement de Soins de Longue Durée</td>
</tr>
<tr>
<td>ESSR</td>
<td>Etablissement de Soins de Suite et de Réadaptation</td>
</tr>
<tr>
<td>EUCAST</td>
<td>European Committee on Antimicrobial Susceptibility Testing</td>
</tr>
<tr>
<td>GLASS</td>
<td>Global Antimicrobial Resistance Surveillance System</td>
</tr>
<tr>
<td>HAD</td>
<td>Hospitalisation A Domicile</td>
</tr>
<tr>
<td>HIA</td>
<td>Hôpital d’Instruction des Armées</td>
</tr>
<tr>
<td>I</td>
<td>Intermédiaire</td>
</tr>
<tr>
<td>INJ</td>
<td>Injectable</td>
</tr>
<tr>
<td>IVG</td>
<td>Interruption volontaire de grossesse</td>
</tr>
<tr>
<td>JH</td>
<td>Journée d’Hospitalisation</td>
</tr>
<tr>
<td>MCO</td>
<td>Clinique privée de court séjour (Médecine, Chirurgie, Obstétrique)</td>
</tr>
<tr>
<td>MECSS</td>
<td>Maison d’Enfant à Caractère Sanitaire et Social</td>
</tr>
<tr>
<td>OMEDIT</td>
<td>Observatoire du médicament, des Dispositifs Médicaux et de l’Innovation Thérapeutique</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation Mondiale de la Santé</td>
</tr>
<tr>
<td>ONERBA</td>
<td>Observatoire National de l’Épidémiologie de la Résistance Bactérienne aux Antibiotiques</td>
</tr>
</tbody>
</table>
PROPIAS Programme national d’actions de prévention des Infections Associées aux Soins
PSY Etablissement de santé spécialisé dans la lutte pour maladie mentale
PUI Pharmacie à Usage Intérieur
R Résistance
RAISIN Réseau d’Alerte, d’Investigation et de Surveillance des Infections Nosocomiales
S Sensibilité
SAE Statistiques annuelles des Etablissements de santé
SARM Staphylococcus aureus Résistant à la Méticilline
SPARES Surveillance et Prévention de l’AntibioRésistance en Etablissement de Santé
SPF Santé Publique France
TA Type d’Activité
UA Unité Administrative
UCD Unité Commune de Dispensation
UCSA Unité de Consultations et de Soins Ambulatoires pour les personnes détenues
UF Unité Fonctionnelle
UG Unité de Gestion
Nouveautés 2021 et rappel de l’évolution des surveillances nationales

NOUVEAU !

- Depuis 2019, Les secteurs EHPAD des ES ainsi que les EHPAD non rattachés à des ES et ayant une pharmacie à usage intérieur (PUI) sont désormais concernés par la surveillance de la consommation des antibiotiques et des résistances bactériennes (partenariat avec la mission PRIMO pour les résistances).

- **COVID-19 :**
 - Formulaire : pour aider à l’interprétation des données 2020, un formulaire « Covid » vous permet de renseigner des informations concernant l’activité COVID-19 (nombre de patients pris en charge et secteurs d’activité d’hospitalisation)
 - Unités d’hospitalisation (UF) spécifiques : le code DE (discipline d’équipement) ‘999’ a été créé pour les unités covid

Surveillance de la consommation des antibiotiques

- **Nouveaux antibiotiques**
 - méropénème/vaborbactam 1g/1g, poudre pour solution à diluer pour perfusion. Code ATC J01DH52 – DDJ OMS (2021) = 3 g
 - céldérocrol 1 g poudre pour solution à diluer pour perfusion. Code ATC J01DI04 - DDJ = 6g d’après le RCP (pas de DDJ OMS)

- Antibiotiques supprimés (suspension de commercialisation ou retrait AMM) : télixirmycine (J01FA15) ; tédizolide, forme injectable (J01XX11), la forme orale reste commercialisée.

RAPPEL

Surveillance de la résistance bactérienne aux antibiotiques

- **Rappel** : Pour répondre aux nouveaux enjeux et objectifs des surveillances, la méthodologie de surveillance proposée diffère de celle de BMR-Raisin en termes de :
 - méthode de recueil : importation de fichier versus saisie de fiches individuelles, pour un gain de temps ;
 - cibles : ensemble des bactéries isolées dans un prélèvement à visée diagnostique et ayant nécessité un antibiogramme, suivi particulier SARM et EBLSE ;
 - indicateurs : pourcentage de résistance au sein de l’espèce en complément de l’incidence rapportée à l’activité grâce au recueil des données sur l’ensemble des souches, souches sensibles ET souches résistantes ;
 - période : 12 mois en rétrospectif versus 3 mois en « prospectif » ; (NB : il est possible d’importer des données tous les 3 mois) ;
 - dédoublonnage : réalisé automatiquement lors de l’import des données.
 - les espèces du complexe **Enterobacter cloacae** : **Enterobacter asburiae** et **Enterobacter nimipressuralis** ont été rajoutées dans le thésaurus en 2019
I. Contexte des surveillances nationales

Place des surveillances de la consommation d’antibiotiques et des résistances bactériennes

La surveillance de la consommation des antibiotiques et des résistances bactériennes aux antibiotiques s’intègre dans la politique nationale de lutte contre l’antibiorésistance, axe de travail du programme national d’actions de prévention des infections associées aux soins (Propias) 2015 et de la feuille de route interministérielle de maîtrise de l’antibiorésistance. La surveillance fait partie des actions prioritaires à promouvoir par les agences régionales de santé pour piloter la politique régionale de lutte contre l’antibiorésistance [1-10]. Depuis 2018 et la disparition des anciens réseaux de surveillance Raisin, les surveillances répondent à un cahier des charges national établi par le Comité « missions nationales infections associées aux soins ». Son élaboration a notamment pris en compte :

- les besoins des professionnels des ES d’intégrer des indicateurs de pratiques aux systèmes de surveillance et de recourir aux systèmes d’information hospitaliers pour alléger le temps consacré au recueil des données (souhaits exprimés notamment lors du travail de hiérarchisation des priorités de surveillance conduit en 2014) ;
- les objectifs du Programme national d’actions de prévention des IAS (Propias), de la feuille de route interministérielle « Antibiorésistance » et des programmes européens coordonnés par l’ECDC.

La mission nationale de surveillance et de prévention de la résistance bactérienne aux antibiotiques en établissement de santé (SPARES) est en charge de la surveillance de la consommation d’antibiotiques et des résistances bactériennes pour les établissements de santé.

La mission PRIMO, en charge de la surveillance et de la prévention de la résistance bactérienne aux antibiotiques et des infections associées aux soins en secteur médico-social et en ville, est coordonnée par le CPIas Pays-de-la-Loire associé au CPIas Grand-Est.

Les apports de la surveillance nationale

La méthodologie proposée répond aux enjeux fixés au niveau national :
- alléger les modalités de la surveillance en recourant au système d’information hospitalier pour privilégier la prévention ;
- homogénéiser les recueils existants précédemment et permettre de confronter résistance et consommation d’antibiotiques ;
- étendre le champ de la surveillance de la résistance, conformément au programme national d’actions de prévention des infections associées aux soins (Propias), à la feuille de route interministérielle de maîtrise de l’antibiorésistance et aux objectifs européens ;
- faciliter l’accès aux données de surveillance de la résistance et des consommations antibiotiques aux échelons locaux, régionaux et nationaux ;
- fournir les indicateurs permettant aux acteurs en charge du bon usage des antibiotiques et de la lutte contre l’antibiorésistance d’orienter leurs actions ;
- initier et développer des méthodes de surveillance de résistances émergentes ou nouvelles, en lien avec le Centre National de Référence et coordonner la production de données pour la surveillance de la résistance bactérienne et de la consommation d’antibiotiques au niveau européen.

C’est ainsi que la méthode proposée permet de recueillir des indicateurs pour un pilotage interne et externe tout en facilitant le travail d’importation des données et en simplifiant le recueil grâce à :
– un **outil commun** pour les deux surveillances : ConsoRes,
– une **période commune** : annuelle, avec la possibilité d’importer par trimestre,
– la possibilité d’**importation à partir des logiciels métiers**.

Au niveau **local**, la surveillance nationale permet aux professionnels de disposer :
– de données recueillies de façon comparable dans le temps et d’un ES à l’autre : la surveillance **nationale** avec l’outil ConsoRes permet à chaque participant de se situer par rapport à un ensemble d’ES et d’activités les plus homogènes possibles, grâce à la présentation des données de consommation d’antibiotiques détaillées par type d’ES et par type d’activité médicale ;
– d’une **aide à l’utilisation** pour les guider dans l’interprétation des résultats et la détermination d’actions à conduire (annexe 1) : **analyse et suivi dans le temps**, analyse des **différences** observées par rapport à un ensemble comparable pour identifier des pistes de travail (évaluation des pratiques de prévention de la transmission, enquêtes de pertinence des prescriptions, formations, mise en place ou consolidation des structures et organisations pour la prévention de la transmission croisée et le bon usage des antibiotiques…). Ces actions concernent l’ensemble des professionnels impliqués dans la lutte contre l’antibiorésistance, pharmaciens, microbiologistes, équipes d’hygiène, infectiologues, prescripteurs, infirmiers, autres professionnels médicaux et paramédicaux et membres de l’équipe de direction.

La participation à la surveillance nationale en réseau facilite les **partages d’expériences** avec les collègues d’autres ES. Par exemple, le partage d’expériences lors des réunions et journées scientifiques animées par le réseau des Centres d’appui pour la prévention des infections associées aux soins (CPias) en partenariat avec les autres acteurs régionaux, favorise la **reproduction d’actions d’amélioration et les échanges sur les modalités pratiques pour impulser le changement** : élaboration d’outils pédagogiques, évaluation de pratiques de prévention, audits de pertinence des prescriptions et analyse des résultats avec les prescripteurs, instauration d’antibiogrammes ciblés, développement de fonctionnalités sur les logiciels de prescription et logiciels pharmaceutiques…

En complément des surveillances épidémiologiques, des outils de prévention et d’évaluation des actions de prévention basés sur les données de surveillance et les besoins des établissements de santé sont proposés. Ces outils permettent aux ES d’explorer un ensemble de facteurs contribuant à l’antibiorésistance et de définir les actions d’amélioration à mettre en place (voir site de la mission SPARES : http://www.cpias-grand-est.fr/index.php/spares-prevention/).

Au niveau **régional**, les informations produites, ainsi que le réseau de professionnels constitué dans le cadre de la surveillance, s’avèrent particulièrement utiles dans le contexte de la mise en œuvre de l’instruction du 15 mai 2020 relative à la lutte contre l’antibiorésistance sous l’égide des ARS, en partenariat avec les acteurs concernés : CPias, Omedit, centres régionaux d’antibiothérapie [3-5, 9-10].

Au niveau **national**, les indicateurs produits permettent de suivre l’impact des stratégies développées sur l’évolution des consommations d’antibiotiques et des résistances bactériennes dans les ES, en cohérence avec les programmes européens et mondiaux [11-15]. Avec les indicateurs complémentaires sur les pratiques de prévention, il sera possible d’orienter au mieux les actions d’amélioration, notamment en matière de formation, d’évaluation des pratiques, d’encadrement de la prescription et de la dispensation, de mesures de prévention de la transmission croisée.
II. Objectifs

II.1. Surveillance de la consommation des antibiotiques

- Quantifier et décrire la consommation des antibiotiques dans les différents types d’établissements de santé, dans les différents secteurs d’activité clinique et dans les EHPAD, et aux niveaux régional et national
- Suivre l’évolution dans le temps des consommations
- Permettre à chaque établissement participant:
 - de surveiller la consommation des antibiotiques et de mettre ses résultats en parallèle avec les résistances bactériennes, et avec les mesures de prévention de la transmission ;
 - de se situer par rapport à des établissements comparables ;
 - d’analyser les différences, afin d’identifier des pistes d’évaluation complémentaire pour optimiser l’utilisation des antibiotiques (annexe 1).

II.2. Surveillance de la résistance bactérienne aux antibiotiques

- Décrire l’épidémiologie locale de la résistance bactérienne aux antibiotiques présentant un intérêt clinique
- Quantifier particulièrement les SARM, les entérobactéries productrices de BLSE, de céphalosporinase déréprimée/haut niveau et de carbapénémase
- Recueillir les indicateurs nationaux de résistance bactérienne (Propias) avec une méthode nationale standardisée :
 - Pourcentage de SARM dans les bactériémies à S. aureus de survenue ≥ 48h
 - Densité d’incidence des bactériémies à SARM de survenue ≥ 48h
 - Densité d’incidence des bactériémies à K. pneumoniae et E. cloacae complex BLSE de survenue ≥ 48h
 - Taux EPC parmi les bactériémies à K. pneumoniae
 - Taux ERV parmi les bactériémies à E. faecium
- Suivre l’évolution dans le temps de ces indicateurs
- Permettre à chaque établissement participant :
 - de se situer par rapport à des établissements comparables,
 - d’analyser les différences, afin d’identifier des pistes d’amélioration pour optimiser l’utilisation des antibiotiques (annexe 1).

- Au niveau international, la mission SPARES décrira et fournira à SPF les indicateurs de résistance bactérienne pour la France afin de contribuer aux réseaux de surveillance européens (EARS-Net) et mondiaux (GLASS) [15-16].
III. Méthode

La participation aux deux systèmes de surveillance, consommation des antibiotiques et résistances bactériennes, est recommandée ; il est toutefois possible de ne participer qu’à une seule des deux surveillances.

III.1. Période de surveillance
Cette étude recueille rétrospectivement les données du 1er janvier au 31 décembre 2020.

III.2. Etablissements inclus dans la surveillance
Tous les établissements de santé ayant une activité d’hospitalisation complète et/ou d’hospitalisation de semaine ainsi que les EHPAD comportant une PUI sont inclus dans la surveillance (voir liste des établissements en annexe 2).

III.3. Etablissements exclus de la surveillance
Les établissements de santé de type maison d’enfant à caractère sanitaire et social (MECSS), les établissements d’hospitalisation à domicile (HAD) et les établissements de dialyse ambulatoire ne sont pas concernés par la surveillance SPARES (NB : d’autres méthodes d’étude de l’utilisation des antibiotiques peuvent être mieux adaptées).

III.4. Activités incluses dans la surveillance
Les hospitalisations complètes (y compris hospitalisations de semaine) et hébergements dans les secteurs suivants :
- Médecine y compris soins intensifs et surveillance continue, « lits porte » et « unités de très court séjour » ou « hospitalisation de courte durée », à l’exclusion de la pédiatrie et de la réanimation,
- Chirurgie, y compris bloc opératoire, salle de soins post-interventionnelle, soins intensifs chirurgicaux et surveillance continue, à l’exclusion de la pédiatrie et de la réanimation,
- Réanimation médicale et chirurgicale, à l’exclusion de la pédiatrie (Rappel : les statuts des services de réanimation, surveillance continue, soins intensifs sont précisés par les décrets n° 2002-465 et 466 du 5 avril 2002 et la circulaire n° 2003/413 du 27 août 2003 concernant l’activité de réanimation),
- Pédiatrie y compris réanimation et USI pédiatriques et néonatales, chirurgie, SSR pédiatriques, pédopsychiatrie,
- Gynécologie/obstétrique y compris bloc obstétrical,
- Soins de suite et de réadaptation (adultes),
- Soins de longue durée (adultes),
- Psychiatrie (adultes),
- EHPAD :
 o rattachés ou non à un ES : données de consommation recueillies par et pour la mission SPARES,
 o rattachés à un ES : données de résistance bactérienne recueillies par SPARES puis transmises à la mission PRIMO – les EHPAD non rattachés à un ES surveillent leur résistance bactérienne via la mission PRIMO directement (outil MedQual-Ville).
La dispensation d’antibiotiques et la réalisation de prélèvements dans les unités de soins intensifs et unités de surveillance continue spécialisées sont affectées à la discipline correspondante, en médecine, chirurgie ou pédiatrie.

Nouveau 2021 : Un formulaire Covid est à renseigner pour une meilleure interprétation des données (prise en charge ou non de patients Covid / si oui, au sein de quel(s) secteur(s) d’activité (réanimation, médecine, etc).

III.5. Activités exclues de la surveillance

Les activités exclues de la surveillance sont les activités ne correspondant pas à une hospitalisation complète ou de semaine en établissement de santé :
- La rétrocession externe,
- Les venues (hospitalisation de jour ou de nuit, anesthésie),
- Les séances (traitements et cures ambulatoires : chimiothérapie, radiothérapie ...),
- Les journées de prise en charge (hospitalisation à domicile...),
- Les consultations,
- Les passages (urgences),
- Les unités de consultations et soins ambulatoires pour les personnes détenues (UCSA).

D’autres activités ne font pas l’objet de la surveillance nationale SPARES 2020 mais peuvent être suivies localement. Il est en effet possible de recueillir les données dans les secteurs suivants :
- Secteurs de dialyse : le nombre de séances est utilisé comme dénominateur,
- Secteurs de chirurgie ambulatoire (dont IVG) : le nombre de séjours est utilisé comme dénominateur.

Important : Les données des activités de chirurgie ambulatoire et de dialyse peuvent être intégrées dans ConsoRes mais ne feront pas l’objet d’analyse dans le cadre de la mission SPARES.

III.6. Dédoublement des données de résistance bactérienne aux antibiotiques

Les définitions suivantes font référence aux « Recommandations méthodologiques pour la surveillance de la résistance aux antibiotiques dans les laboratoires de microbiologie », publiées par l’ONERBA [17].

Définition

Un doublon est une souche isolée chez un malade pour lequel une souche de la *mêmespécè* et de *mêmes antibiotype* a déjà été prise en compte durant la période de l’enquête pour un *mêmes type de prélèvement* à visée diagnostique.

L’antibiotype désigne le profil de sensibilité/résistance du micro-organisme aux différents antibiotiques testés.

Le dédoublement consiste donc à exclure des analyses statistiques les données redondantes responsables d’une surestimation du pourcentage de sensibilité/résistance.
Règles de dédoublonnage

Important : Le dédoublonnage avant l’intégration du fichier ne doit pas être effectué : il est réalisé automatiquement lors de l’import du fichier dans l’outil ConsoRes.

L’antibiotype diffère s’il existe, entre les souches comparées et pour au moins une molécule, une différence majeure (S <-> R) de catégories cliniques. Les différences mineures (S <-> I ou R <-> I) ne sont pas incluses dans la caractérisation des doublons.

Pour une même souche (même bactérie, même prélèvement) :
- Si même antibiotype avec un nombre identique d’antibiotiques testés : le prélèvement le plus ancien est conservé,
- Si même antibiotype avec un nombre différent d’antibiotiques testés : le prélèvement avec le plus de molécules testées est conservé.

Une case vide pour un antibiotique est considérée comme une absence de données et ne fait pas partie des caractères discriminants pour le dédoublonnage.

Le dédoublonnage porte aussi sur le phénotype. Dans ce cas, une case « phénotype » vide signifie l’absence de ce phénotype chez la bactérie étudiée.

IV. Recueil et intégration des données

Des fiches techniques et des tutoriels vidéo d’utilisation de l’outil sont disponibles sur le site www.club-consores.fr

Lors de l’import des données, il est essentiel de vérifier la cohérence des données par rapport à l’année précédente et par rapport aux données d’établissements et secteurs d’activité comparables. (onglet « contrôle général » de ConsoRes)

IV.1. Données administratives

Ces données permettent de caractériser l’établissement de santé :
- Type d’établissement
- Statut : public, privé, PSPH (établissements privés participant au service public hospitalier)
- N° Finess géographique et N° Finess juridique
- Nombre total de lits et nombre de lits par secteur d’activité : lits installés et correspondant aux lits d’hospitalisation complète, y compris hospitalisation de semaine, nombre de places pour le secteur ambulatoire, nombre de places d’hébergement pour le secteur EHPAD.
- Formulaire COVID : accueil ou non de patients Covid, si oui : nombre de patients concernés, secteur(s) d’activité d’hospitalisation (réanimation, médecine, etc)

Important : Ces données sont à actualiser chaque année.
Seul le référent ConsoRes de l’établissement peut modifier ces informations.
Pour toute restructuration d’établissement (groupement hospitalier, etc), merci de contacter consores@chru-nancy.fr.

Actualiser les données administratives de l’établissement
IV.2. Structure de l’établissement

Afin d’assurer une analyse des données par secteur d’activité clinique et par unité fonctionnelle (ou service ou pôle), un fichier « structure » est à renseigner :
- Code UF
- Libellé UF
- Code service
- Libellé service
- Code pôle
- Libellé pôle
- Code « discipline d’équipement » (DE) (Liste des Code_DE)
- Code « type d’activité » (TA) (Liste des Code_TA)

Il est nécessaire de s’assurer de la cohérence stricte entre la codification des UF utilisée par l’administration, la pharmacie et le laboratoire afin de relier ces informations entre elles lors de l’analyse des résultats.

Ces données sont à intégrer avant tout recueil de données d’activité, de consommation d’antibiotiques et de résistance bactérienne.

Si la structure de l’établissement n’est pas modifiée d’une année à l’autre, il n’est pas nécessaire d’intégrer à nouveau ces données l’année suivante (données mémorisées lors des prochaines connexions).

Intégrer la structure de l’établissement

Créer des unités fonctionnelles spécifiques COVID-19

IV.3. Données d’activité

Données sur les activités d’hospitalisation complète faisant l’objet de la surveillance nationale

Le nombre de journées d’hospitalisation correspond aux hospitalisations complètes, y compris les hospitalisations de semaine, facturées lors de l’année 2020, telles que déclarées dans le cadre de la statistique annuelle des établissements de santé (SAE). Elles sont distinguées pour chaque unité fonctionnelle faisant l’objet du recueil. Les recommandations nationales privilégient la journée d’hospitalisation comme « dénominateur ». Ces données sont indispensables pour l’expression de la consommation d’antibiotiques et de la résistance bactérienne.

Données sur les secteurs d’EHPAD

Les données administratives recueillies pour exprimer l’activité sont le nombre de journées d’hébergement dans les secteurs EHPAD concernés par la surveillance, facturées en 2020 (SAE).

Ces données sont à intégrer au choix de façon annuelle ou trimestrielle et sont recueillies par unité fonctionnelle.
Données sur les secteurs ne faisant pas l’objet de la surveillance nationale

Les données administratives recueillies pour exprimer l’activité sont :
- pour la chirurgie ambulatoire : le nombre de séjours en chirurgie ambulatoire, facturés en 2020 (SAE).
- pour les secteurs de dialyse : le nombre de séances de dialyse, facturées en 2020 (SAE).

IV.4. Données de consommation d’antibiotiques

La quantité d’unités communes de dispensation (UCD) dispensées pour chaque présentation d’un antibiotique, c’est-à-dire le nombre de comprimés, sachets, ampoules, flacons de solution buvable… pour chaque forme pharmaceutique commercialisée, sera recueillie à partir des données des pharmacies à usage intérieur (PUI). L’outil ConsoRes permet une importation des quantités en UCD pour une conversion en nombre de DDJ afin d’exprimer l’indicateur de consommation en nombre de DDJ pour 1000 journées d’hospitalisation (JH) selon les recommandations nationales (annexe 3) [8].

- **Antibiotiques inclus** :
 - les consommations de rifampicine (antituberculeux classé en J04) et imidazolés par os (antiparasitaires classés en P01) sont également relevées,
 - la fidaxomicine, bien qu’à visée non systémique (antibiotique à visée intestinale classé en A07AA), est surveillée du fait de son indication ciblée et de son inclusion dans les futurs protocoles de surveillance européens.

- **Anti-infectieux exclus** :
 - les anti-tuberculeux, les anti-viraux et les anti-parasitaires ne font pas l’objet d’un recueil (sauf exceptions mentionnées plus haut : rifampicine et imidazolés par os),
 - les antibiotiques utilisés à visée de décontamination digestive (comprimés de colistine, gélules d’aminosides…) sont exclus,
 - les antifongiques.

Ces données sont à intégrer au choix de façon annuelle ou trimestrielle et sont recueillies par unité fonctionnelle.
IV.5. Données de résistance bactérienne aux antibiotiques

Les données suivantes sont à renseigner **une seule fois pour l’année 2020** lors de l’intégration des données :

- Nombre total de sets d’hémocultures (positives et négatives) :
 - **Adultes** : un set = un flacon aérobie ET un flacon anaérobie,
 - **Pédiatrie** : un set = un flacon aérobie.

- Référentiel de bactériologie utilisé (Ex : CASFM /EUCAST 2020 v1.1 avril 2020).

Seules les souches de bactéries isolées des prélèvements à visée diagnostique ayant fait l’objet d’un antibiogramme durant l’année 2020 sont inclues dans la surveillance (date de prélèvement entre le 1er janvier et le 31 décembre 2020).

Chaque souche bactérienne d’intérêt est caractérisée par :

- un **patient source** : N° d’identification permanent du patient, date de naissance, date d’admission, UF d’hospitalisation,
- une **date de prélèvement** et une **origine**,
- un **antibiotype**,
- un **phénotype** de résistance pour les entérobactéries (BLSE, céphalosporinase déréprimée/haut niveau, carbapénémase).

Ces données sont à intégrer au choix de façon annuelle ou trimestrielle et sont recueillies par unité fonctionnelle.

Intégrer les données de résistance bactérienne aux antibiotiques

Patient

Caractéristiques à renseigner pour chaque patient :

- **UF d’hospitalisation** au moment du prélèvement,
- **Identifiant permanent du patient** (N° IPP ou N° permanent d’identification du laboratoire) : anonymisé automatiquement et permettant le dédoublonnage lors de l’intégration des données dans l’outil ConsoRes,
- **Âge** : soit la date de naissance (préférée à l’âge en années), soit l’âge du patient en années,
- **Date d’admission dans l’établissement** : information permettant une approximation de la notion d’infection acquise selon la date de prélèvement (< ou ≥ 48 h).

Prélèvement

Prélèvements inclus dans la surveillance : UNIQUEMENT les prélèvements à visée diagnostique (diagnostic individuel, positif et étiologique des pathologies infectieuses (ONERBA) ayant fait l’objet d’un antibiogramme)

Prélèvements exclus de la surveillance : prélèvements à visée écologique (recherche de colonisation, portage, dépistage).
Caractéristiques à renseigner pour chaque prélèvement :

- **Date du prélèvement** : information permettant une approximation de la notion d’infection acquise selon la date d’admission au sein de l’établissement (< ou ≥ 48 h),

Bactérie

Toutes les bactéries isolées de prélèvements diagnostiques et présentes dans le thésaurus (Annexe 5) sont recueillies.

Antibiotype

Pour chaque molécule testée, le résultat S (Sensible), I (Intermédiaire) ou R (résistant) est renseigné.
Il est conseillé d’interpréter les résultats de l’antibiogramme selon les dernières recommandations du CA-SFM/EUCAST.

Phénotype de résistance

Pour les entérobactéries, les résultats de la recherche de bêta-lactamases à spectre étendu (BLSE), de céphalosporinase déréprimée/haut niveau et de carbapénémase sont à renseigner après vérification du phénotype.

Un dictionnaire de l’ensemble des variables, disponible en annexe 6, résume leurs caractéristiques (libellé, format, ...).

V. Analyse et diffusion des résultats

V.1. Traitement des données

L’analyse des données est assurée par la mission nationale SPARES. Elle comprend, en premier lieu, un contrôle de cohérence/vraisemblance de l’ensemble de la base de données avec possibilité de contacter les ES en cas de besoin.

Les quantités d’antibiotiques dispensées par la PUI sont converties en nombre de doses définies journalières (DDJ) (dernière version de l’OMS en vigueur à la date de la surveillance) puis rapportées à l’activité pour 1000 journées d’hospitalisation (JH). Les données de consommation sont ainsi exprimées en nombre de DDJ /1000 JH.

Les données de résistances bactériennes sont analysées après dédoublonnage par le logiciel ConsoRes.
Pour une même souche, l’analyse ne prend en compte qu’un prélèvement par patient selon le type de recherche souhaitée :
- analyse des résistances par type de prélèvement : les doublons « prélèvement » sont exclus, un seul prélèvement (le plus ancien) par type de prélèvement et par patient, est conservé,
– analyse globale des résistances **tous types de prélèvements confondus** : seul un prélèvement par patient est conservé, le plus ancien quel que soit le type de prélèvement.

V.2. Analyses locales : rapports automatique et personnalisé

Rapport automatique

Le rapport automatique est adressé trimestriellement et/ou annuellement (selon le rythme d’intégration des données choisi) aux établissements participants. Il comprend les données de consommation des antibiotiques et de résistance bactérienne (annexe 7). Il est également téléchargeable sur le site www.consores.net dès l’importation des données finie pour permettre notamment de repérer d’éventuelles anomalies.

Les données de **consommation** sont décrites par type d’établissement, par secteur d’activité clinique, et pour chaque famille d’antibiotiques. Elles sont calculées par défaut sur l’ensemble de l’établissement et comprennent :

– la consommation d’antibiotiques, exprimée en nombre de DDJ/1000 JH, comparée à celle d’autres établissements de même type,
– l’évolution de la consommation par famille d’antibiotiques,
– la liste des 10 antibiotiques les plus consommés et leur évolution.

Les données de **résistances bactériennes** comprennent :

– des tableaux reprenant les pourcentages de résistance des espèces les plus courantes pour un panel d’antibiotiques approprié (annexe 7),
– des indicateurs d’incidence détaillés en annexe 7 (SARM, BLSE, ...).

Rapport personnalisé

Le rapport personnalisé permet au niveau de chaque établissement de réaliser des analyses en ligne adaptées aux besoins (www.consores.net) concernant la consommation des antibiotiques et la résistance bactérienne. **Celtes relatives aux données de résistance bactérienne seront disponibles prochainement.** Elles seront limitées à des résistances acquises d’intérêt.

Ce rapport permet à l’ES :

– d’affiner ses analyses au niveau du secteur d’activité clinique, de la discipline voire même du pôle, service, unité fonctionnelle,
– de se situer par rapport à un ensemble de structures comparables (type d’établissement, localisation géographique, ...).

Ainsi, l’ES dispose de données locales lui permettant :

– de définir des plans d’action personnalisés, des actions complémentaires ciblées, des audits sur l’antibiothérapie/antibioprophylaxie,
– d’avoir des supports pour diffuser ses résultats en interne et communiquer avec les professionnels de santé (tableaux, graphiques).
V.3. Indicateurs régionaux

V.4. Indicateurs nationaux

Un rapport national comprenant l’analyse des données validées et anonymisées est produit chaque année, accompagné d’un diaporama modifiable, pour faciliter les présentations locales [18]. En complément, des indicateurs nationaux et régionaux sont disponibles sur la plateforme Géodes de Santé Publique France.
L’ensemble de ces outils est mis à disposition sur le site de Santé Publique France et sur les pages de la mission SPARES.

V.5. Données européennes et internationales

Les données de surveillance de la résistance bactérienne aux antibiotiques permettront de générer les indicateurs de résistance bactérienne faisant l’objet de la surveillance EARS-Net coordonnée par l’European Centre for Disease Prevention and Control (ECDC) et de la surveillance GLASS proposée par l’OMS [15-16].

Pour davantage d’informations,
– la méthodologie de la surveillance proposée par l’OMS est disponible sur le site de l’OMS : https://www.who.int/antimicrobial-resistance/global-action-plan/surveillance/glass/fr/
Références

Annexe 1 : Aide à l’utilisation des données de consommation d’antibiotiques et de résistances bactériennes

Étapes d’analyse des données de consommation d’antibiotiques

Au niveau de chaque établissement, la démarche d’analyse des données comporte plusieurs étapes.

- La première étape essentielle consiste à vérifier la validité des données saisies : cohérence des données administratives, des quantités saisies.
- La deuxième étape repose sur le suivi dans le temps des consommations rapportées au nombre de journées d’hospitalisation (JH), en comparant les consommations de l’année à celles de l’année précédente en prenant en compte les évolutions d’activité (évolution de la durée moyenne de séjour, prise en charge de pathologies différentes...) et de stratégie thérapeutique.
- Une troisième étape consiste en une comparaison des valeurs observées localement par rapport aux valeurs des établissements de même type :
 - comparaison de la valeur de la consommation globale observée, et de la consommation par famille d’antibiotiques ;
 - comparaison des valeurs par secteur d’activité ;
 - comparaison des valeurs par molécule, pour certains antibiotiques (fluoroquinolones, céphalosporines de troisième génération...).

Comment se situer par rapport aux données de la surveillance nationale ?

Les données de consommation, exprimées en nombre de doses définies journalières (DDJ)/1 000 journées d’hospitalisation (JH) sont disponibles lors d’analyses en ligne dans l’outil ConsoRes et décrites dans le rapport annuel de la surveillance par type d’établissement, par secteur d’activité clinique, et pour chaque famille d’antibiotiques. La présentation des résultats doit permettre à chaque établissement participant de pouvoir se situer par rapport à un ensemble de structures comparables. L’accès à l’outil ConsoRes est réservé aux structures inscrites et ayant accepté la charte d’engagement (cf méthodologie nationale).

La DDJ étant définie pour un adulte, il faut en tenir compte lors de l’interprétation des données de pédiatrie (voir définition des DDJ dans la méthodologie nationale SPARES). De même, l’importance de l’activité de pédiatrie est à considérer lors de la confrontation de données d’établissements différents. L’expression en DDJ permet toutefois une standardisation des mesures. Elle est utilisée dans la plupart des surveillances de consommation d’antibiotiques.

Dans le rapport des données nationales, des tableaux permettent de décrire les consommations d’antibiotiques, tous confondus et par famille, par type d’établissement. Lors des analyses en ligne, des graphiques peuvent être générés détaillant les consommations par secteurs d’activité, pour se comparer avec l’ensemble des secteurs comparables.

Interprétation des données

L’interprétation des données doit conduire à la mise en place d’actions d’évaluation ou d’amélioration adaptées à la situation locale, en prenant en compte les facteurs influant sur la consommation d’antibiotiques dans un établissement de santé :

- Facteurs liés aux patients accueillis et au type d’activité (caractéristiques des pathologies prises en charge localement) :
- activité de réanimation, d’hématologie (avec ou sans greffe de moelle), de traitement de maladies infectieuses principalement bactériennes, prise en charge d’infections ostéo-articulaires, etc. Une proportion importante des patients hospitalisés dans ces services présente des infections nécessitant parfois des posologies élevées et/ou une longue durée de traitement. À l’inverse, certaines activités telles la psychiatrie, les soins de longue durée en gériatrie ou la pédiatrie générale, accueillent des patients à moindre risque d’infection bactérienne,
- type de patients accueillis : insuffisants rénaux, patients atteints de mucoviscidose, enfants (les DDJ étant définies pour un adulte), etc.

- Facteurs liés à l’écologie bactérienne, notamment la fréquence de la résistance aux antibiotiques qui va résulter de l’efficacité des mesures de prévention de la transmission croisée, notamment lors de l’admission de patients porteurs, de la survenue d’épidémies et de l’utilisation d’antibiotiques qui favorisent l’émergence de résistance.

- Facteurs liés à l’organisation de la prescription : existence de recommandations locales, de politiques locales de restriction (prescription et dispensation contrôlée), d’outils informatiques d’aide à la décision, informatisation de la prescription, accès à un conseil de prescription localement ou auprès d’un référent extérieur.

- Facteurs liés aux habitudes de prescription :
 - utilisation des fluoroquinolones,
 - relais oral dès que possible,
 - "désescalade" systématique à réception des résultats microbiologiques (recours à des antibiotiques de spectre étroit) lorsqu’elle est indiquée,
 - doses et durées de traitement, etc.

Des outils d’évaluation des pratiques sont proposés par les sociétés savantes et la Haute autorité de santé (HAS) concernant notamment l’évaluation de l’antibiothérapie à 48-72h, l’antibio prophylaxie chirurgicale, la pertinence des prescriptions de fluoroquinolones ou des carbapénèmes (cf. site du Répia www.preventioninfection.fr). Ils sont utiles pour faire le point sur les pratiques et les pistes de progrès.

Exemple d’utilisation des données de consommation d’antibiotiques

Suivi dans le temps : l’établissement Centre hospitalier (CH) de "Ici" – qui comporte plus de 33% de ses lits en court séjour - a une consommation globale d’antibiotiques de 370 DDJ/1 000 JH alors que sa consommation était de 350 DDJ/1 000 JH l’année précédente. L’interprétation de cette évolution dans le temps prendra en compte les évolutions d’activité (évolution de la durée moyenne de séjour, développement des prises en charge ambulatoires, prise en charge de pathologies différentes...) et de stratégie thérapeutique (relais per os précoce pour l’amoxicilline/acide clavulanique par exemple). En complément de la consommation en nombre de DDJ pour 1 000 journées d’hospitalisation complète (JH), les données exprimées en nombre de DDJ pour 100 admissions sont utiles à suivre pour un établissement, notamment pour l’activité de court séjour. Cette dernière unité apporte une information complémentaire notamment pour tenir compte des variations d’activité lorsque le nombre d’admissions et la durée moyenne de séjour évoluent dans le temps. Par exemple, une augmentation de la consommation exprimée en nombre de DDJ/1000 JH, avec une stabilité de la quantité exprimée en nombre de DDJ/100 admissions et une diminution de la durée de séjour, indiquerait que le nombre de patients exposés aux antibiotiques n’a pas augmenté mais que, les séjours se raccourcissant, les journées d’hospitalisation sont plus « intenses », les patients ne restant pas après l’arrêt de l’antibiotique par exemple.
Il conviendra de rechercher quels sont les antibiotiques et les secteurs d’activité dont la consommation a évolué afin de cibler les actions à conduire. Lors de la diminution de consommation de certains antibiotiques, il convient de regarder l’évolution des consommations d’autres antibiotiques vers lesquels un report de prescription a pu s’opérer.

Situation par rapport à d’autres établissements, en utilisant les analyses en ligne de l’outil ConsoRes et les données présentées dans les rapports nationaux : l’établissement CH de "Ici" a une consommation globale d’antibiotiques de 370 DDJ/1 000 JH. Sa situation par rapport à d’autres établissements peut être visualisée sur l’outil ConsoRes.

L’analyse des consommations détaillées par famille d’antibiotiques (tableau des consommations d’antibiotiques, regroupés par famille, par type d’établissement) permet de situer sa consommation : par exemple, une consommation de 50 DDJ/1 000 JH de fluoroquinolones est bien supérieure à la moyenne des CH de sa catégorie (tableau A4 du rapport). L’analyse peut porter sur la molécule pour déterminer si une molécule est concernée en particulier. L’analyse se poursuit sur les autres familles d’antibiotiques afin d’identifier celles pouvant faire l’objet en priorité d’un audit de pratiques ou d’un contrôle de la dispensation.

Situation par rapport à d’autres secteurs d’activité clinique : si le CH de "Ici" a détaillé ses consommations par secteur d’activité clinique, la comparaison des consommations de chaque secteur, réalisable via des analyses en ligne avec l’outil ConsoRes (consommations d’antibiotiques par secteur d’activité et par type d’établissement), permet d’identifier les secteurs d’activité et les familles pouvant faire l’objet d’une étude en priorité.

Par exemple :
- l’analyse débute avec la comparaison de la consommation des secteurs de médecine du CH à celle des autres CH équivalents ;
- l’analyse se poursuit (ou peut se faire directement) au niveau des familles d’antibiotiques pour situer le profil de consommation des secteurs de médecine du CH par rapport à l’ensemble des secteurs de médecine inclus : par exemple, la consommation en carabapénèmes. Des consommations bien plus élevées que la moyenne peuvent être liées à une fréquence élevée d’infections à bactéries multirésistantes ou à une sur-utilisation non justifiée ; un audit des pratiques pourra alors cibler l’utilisation de ces antibiotiques ;
- l’analyse se poursuit sur les autres familles d’antibiotiques afin d’identifier celles pouvant faire l’objet en priorité d’un audit de pratiques ou d’un contrôle de la dispensation. La proportion d’utilisation de voie injectable par rapport à la voie orale pour les fluoroquinolones pourra être étudiée par secteur d’activité clinique.

Lors de la présentation des données de cette surveillance aux services cliniques ainsi qu’en commission des anti-infectieux – ou autre commission – les pistes d’actions pourront être discutées en tenant compte également de résultats d’évaluations des pratiques éventuellement réalisées, afin de mobiliser les professionnels autour du programme de bon usage des antibiotiques.

Étapes d’analyse des données de résistance bactérienne

Au niveau de chaque établissement, il est nécessaire de vérifier la validité des données saisies :
- respect des critères d’inclusion (patient en hospitalisation complète ou de semaine, exclusion des prélèvements de dépistage) ;
- cohérence des données administratives, du nombre de souches saisies.
L’analyse des données se fait à plusieurs niveaux, comme évoqué précédemment pour les consommations d’antibiotiques :

- au niveau de l’ES par le suivi dans le temps des résistances, en comparant les taux de l’année à ceux de l’année précédente en prenant en compte les évolutions d’activité les modifications des pratiques d’hygiène, de stratégies thérapeutiques ;
- par le positionnement par rapport à des valeurs régionales et nationales afin de comparer des valeurs observées localement à celles des établissements de santé de même type : positionnement par rapport aux valeurs médianes de résistance, par type d’établissement.

Cette analyse de données est facilitée par la production d’un rapport automatique et la possibilité de générer un rapport personnalisé (à venir).

Les actions d’amélioration pourront porter sur le volet prévention des infections :

- l’organisation des soins et des pratiques en matière de prévention de la transmission croisée et de lutte contre les BMR : précautions standard (hygiène des mains, hygiène du patient, entretien des locaux et du matériel), précautions complémentaires de type contact, renforcement de la signalisation des patients colonisés ou infectés, investigations et suppression des réservoirs (dépistage des patients porteurs, recherche d’une source environnementale éventuellement…), dispositif d’alerte à partir du laboratoire, accompagnement par les EOH ;
- la réalisation d’évaluations de pratiques, de formations, les stratégies d’utilisation des antibiotiques.
Annexe 2 : Type d’établissement inclus

<table>
<thead>
<tr>
<th>Type d’établissement</th>
<th>Libellé</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHU*</td>
<td>Centre Hospitalier Universitaire</td>
</tr>
<tr>
<td>CH</td>
<td>Centre Hospitalier</td>
</tr>
<tr>
<td>MCO</td>
<td>Clinique privée, de court séjour (médecine, chirurgie, obstétrique...)</td>
</tr>
<tr>
<td>ESLD</td>
<td>Établissement de Soins de Longue Durée</td>
</tr>
<tr>
<td>ESSR</td>
<td>Établissement de Soins de Suite et de Réadaptation</td>
</tr>
<tr>
<td>PSY</td>
<td>Établissement de santé spécialisé dans la lutte pour maladies mentales</td>
</tr>
<tr>
<td>LOC</td>
<td>Centre hospitalier, ex Hôpital Local</td>
</tr>
<tr>
<td>CLCC</td>
<td>Centre de lutte contre le cancer</td>
</tr>
<tr>
<td>HIA</td>
<td>Hôpital d’Instruction des Armées</td>
</tr>
<tr>
<td>EHPAD**</td>
<td>Établissement d’Hébergement pour Personnes Âgées Dépendantes</td>
</tr>
<tr>
<td>ESP</td>
<td>Etablissement Sanitaire des Prisons</td>
</tr>
</tbody>
</table>

* dont CHR
** avec PUI
Annexe 3 : Liste des doses définies journalières (DDJ) utilisées

Les doses définies journalières (DDJ) ou Defined Daily Doses (DDD) sont établies par l’Organisation mondiale de la Santé (OMS). Elles correspondent à la dose moyenne quotidienne d’un traitement d’entretien pour un adulte de 70 kg d’une substance utilisée dans son indication principale. Ainsi, les DDJ doivent être considérées comme des unités de mesure et ne reflètent pas nécessairement les doses journalières prescrites ou recommandées (notamment lors de la prise en compte de caractéristiques pharmacocinétiques ou de caractéristiques individuelles comme le poids, l’âge, l’insuffisance rénale…).

Les DDJ sont établies pour des substances actives seules. Les principes pour calculer les DDJ pour les produits combinés sont décrits dans le document « The Guidelines for ATC classification and DDD assignment » (sur le site Internet de « ATC/DDD system »).

Le calcul des DDJ pour les médicaments associant plusieurs principes actifs consiste à les considérer comme une seule dose journalière indépendamment du nombre de composés actifs dans le produit.

Pour certains produits, l’OMS exprime la DDJ en nombre de dose unitaire (UD, unit dose). Par exemple : Sulfaméthoxazole/TMP : pour cette association, la conversion du nombre de doses unitaires préconisé par l’OMS équivaut à une DDJ exprimée en Sulfaméthoxazole de 1,6 grammes.
Tableau des doses définies journalières (DDJ) d’antibiotiques (Valeurs OMS 2021)

Pour rappel, les DDJ modifiées en 2019 figurent en gras ainsi que les nouveaux antibiotiques

<table>
<thead>
<tr>
<th>Code ATC</th>
<th>Dénomination commune internationale</th>
<th>DDJ en grammes</th>
<th>Code ATC</th>
<th>Dénomination commune internationale</th>
<th>DDJ en grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>J01CE01-08</td>
<td>Pénicilline G INJ (en MU)(^a)</td>
<td>6</td>
<td>J01EE01</td>
<td>Sulfaméthoxazole (+/TMP) O - INJ</td>
<td>1,6</td>
</tr>
<tr>
<td>J01CE02</td>
<td>Pénicilline V O (en MU)(^a)</td>
<td>3,2</td>
<td>J01EA01</td>
<td>Triméthoprime O</td>
<td>0,4</td>
</tr>
<tr>
<td>J01CF02</td>
<td>Pénicilline M (cloxacilline et oxacilline) O - INJ</td>
<td>2</td>
<td>J01EC02</td>
<td>Sulfadiazine O</td>
<td>0,6</td>
</tr>
<tr>
<td>J01CA04</td>
<td>Amoxicilline O</td>
<td>1,5</td>
<td>J01EB02</td>
<td>Sulfaméthizole O</td>
<td>4</td>
</tr>
<tr>
<td>J01CA04</td>
<td>Amoxicilline – INJ</td>
<td>3</td>
<td>J01FA01</td>
<td>Erythromycine O - INJ</td>
<td>1</td>
</tr>
<tr>
<td>J01CA01</td>
<td>Ampicilline O</td>
<td>2</td>
<td>J01FA02</td>
<td>Spiramycine O – INJ(^a) (en MUJ)</td>
<td>9,6</td>
</tr>
<tr>
<td>J01CA01</td>
<td>Ampicilline O – INJ</td>
<td>6</td>
<td>J01FA06</td>
<td>Roxithromycine O</td>
<td>0,3</td>
</tr>
<tr>
<td>J01CA08</td>
<td>Pipéracilline INJ</td>
<td>0,6</td>
<td>J01FA07</td>
<td>Josamicine O</td>
<td>2</td>
</tr>
<tr>
<td>J01CA12</td>
<td>Ticarcilline INJ</td>
<td>14</td>
<td>J01FA09</td>
<td>Clarithromycine O</td>
<td>0,5</td>
</tr>
<tr>
<td>J01CA13</td>
<td>Ticarcilline INJ</td>
<td>15</td>
<td>J01FA09</td>
<td>Clarithromycine INJ</td>
<td>1</td>
</tr>
<tr>
<td>J01CA17</td>
<td>Témocilline INJ</td>
<td>4</td>
<td>J01FA10</td>
<td>Azithromycine O</td>
<td>0,3</td>
</tr>
<tr>
<td>J01CR02</td>
<td>Amoxicilline+Acide clavulanique O</td>
<td>1,5</td>
<td>J01FF01</td>
<td>Clindamyicine O</td>
<td>1,2</td>
</tr>
<tr>
<td>J01CR02</td>
<td>Amoxicilline + Acide clavulanique INJ</td>
<td>3</td>
<td>J01FF01</td>
<td>Clindamyicine INJ</td>
<td>1,8</td>
</tr>
<tr>
<td>J01CR01</td>
<td>Ampicilline + Sultabactam INJ</td>
<td>6</td>
<td>J01FF02</td>
<td>Lincomycine O – INJ</td>
<td>1,8</td>
</tr>
<tr>
<td>J01CR03</td>
<td>Ticarcilline+ Ac. clavulanique INJ</td>
<td>15</td>
<td>J01FG01</td>
<td>Pristinamycine O</td>
<td>2</td>
</tr>
<tr>
<td>J01CR05</td>
<td>Pipéracilline+Tazobactam INJ</td>
<td>14</td>
<td>J01GA01</td>
<td>Streptomycine O</td>
<td>1</td>
</tr>
<tr>
<td>J01DB01</td>
<td>Céfalexine O</td>
<td>2</td>
<td>J01GB01</td>
<td>Tobramycine INJ</td>
<td>0,24</td>
</tr>
<tr>
<td>J01DB04</td>
<td>Céfazoline INJ</td>
<td>3</td>
<td>J01GB01</td>
<td>Tobramycine (inhalation)</td>
<td>0,3</td>
</tr>
<tr>
<td>J01DB05</td>
<td>Céfadoril O</td>
<td>2</td>
<td>J01GB03</td>
<td>Gentamicine INJ</td>
<td>0,24</td>
</tr>
<tr>
<td>J01DC04</td>
<td>Céfclor O</td>
<td>1</td>
<td>J01GB06</td>
<td>Amikacine INJ</td>
<td>1</td>
</tr>
<tr>
<td>J01DC01</td>
<td>Céfotaxine INJ</td>
<td>6</td>
<td>J01MA01</td>
<td>Ofloxacine O – INJ</td>
<td>0,4</td>
</tr>
<tr>
<td>J01DC02</td>
<td>Céfuroxime O</td>
<td>0,5</td>
<td>J01MA02</td>
<td>Ciprofloxacine O</td>
<td>1</td>
</tr>
<tr>
<td>J01DC02</td>
<td>Céfuroxime INJ</td>
<td>3</td>
<td>J01MA02</td>
<td>Ciprofloxacine INJ</td>
<td>0,8</td>
</tr>
<tr>
<td>J01DC03</td>
<td>Cefamandole INJ</td>
<td>6</td>
<td>J01MA06</td>
<td>Norfloxacine O</td>
<td>0,8</td>
</tr>
<tr>
<td>J01DD01</td>
<td>Céfoxatine INJ</td>
<td>4</td>
<td>J01MA07</td>
<td>Loméfloxacine O</td>
<td>0,4</td>
</tr>
<tr>
<td>J01DD02</td>
<td>Cefazidine INJ</td>
<td>4</td>
<td>J01MA12</td>
<td>Lévofloxacine O - INJ</td>
<td>0,5</td>
</tr>
<tr>
<td>J01DD04</td>
<td>Ceftriaxone INJ</td>
<td>2</td>
<td>J01MA14</td>
<td>Moxifloxacine O – INJ</td>
<td>0,4</td>
</tr>
<tr>
<td>J01DD08</td>
<td>Céfixime O</td>
<td>0,4</td>
<td>J01JA01</td>
<td>Vancomycine INJ</td>
<td>2</td>
</tr>
<tr>
<td>J01DD13</td>
<td>Cefpodoxime O</td>
<td>0,4</td>
<td>J01JA02</td>
<td>Teicoplanine INJ</td>
<td>0,4</td>
</tr>
<tr>
<td>J01DD52</td>
<td>Ceftazidine avibactam INJ</td>
<td>6</td>
<td>J01JA04</td>
<td>Dalbavancine INJ</td>
<td>1,5</td>
</tr>
<tr>
<td>J01DC07</td>
<td>Cefotiam O</td>
<td>1,2</td>
<td>P01AB01</td>
<td>Métronidazole O</td>
<td>2</td>
</tr>
<tr>
<td>J01DE01</td>
<td>Céfépine INJ</td>
<td>4</td>
<td>J01XD01</td>
<td>Métronidazole INJ</td>
<td>1,5</td>
</tr>
<tr>
<td>J01DF01</td>
<td>Aztréonam INJ</td>
<td>4</td>
<td>P01AB03</td>
<td>Ornidazole O</td>
<td>1,5</td>
</tr>
<tr>
<td>J01DF01</td>
<td>Aztréonam (inhalation)</td>
<td>0,225</td>
<td>J01XD03</td>
<td>Ornidazole INJ</td>
<td>1</td>
</tr>
<tr>
<td>J01DH51</td>
<td>Imipénème (+ cilastine) INJ</td>
<td>2</td>
<td>P01AB02</td>
<td>Tinidazole O</td>
<td>2</td>
</tr>
<tr>
<td>J01DH02</td>
<td>Méropénème INJ</td>
<td>3</td>
<td>J01BA02</td>
<td>Thiampénicol O – INJ</td>
<td>1,5</td>
</tr>
<tr>
<td>J01DH03</td>
<td>Ertapénème INJ</td>
<td>1</td>
<td>J01XC01</td>
<td>Acide fusidique O – INJ</td>
<td>1,5</td>
</tr>
<tr>
<td>J01DH52</td>
<td>Méropénème/vaborbactam INJ</td>
<td>3</td>
<td>J01XX01</td>
<td>Fosfomycine O</td>
<td>3</td>
</tr>
<tr>
<td>J01DI01</td>
<td>Cefotiboprole INJ</td>
<td>1,5</td>
<td>J01XX01</td>
<td>Fosfomycine INJ</td>
<td>8</td>
</tr>
<tr>
<td>J01DI02</td>
<td>Ceftaroline INJ</td>
<td>1,2</td>
<td>J01XX08</td>
<td>Linézolide O – INJ</td>
<td>1,2</td>
</tr>
<tr>
<td>J01DI04</td>
<td>Céfédérocil INJ</td>
<td>6g(^b)</td>
<td>J01XX09</td>
<td>Daptomycine INJ</td>
<td>0,28</td>
</tr>
<tr>
<td>J01DI54</td>
<td>Céftolozane / tazobactam</td>
<td>3</td>
<td>J01XX11</td>
<td>Tédizolide O</td>
<td>0,2</td>
</tr>
<tr>
<td>J01AA01</td>
<td>Démélocycline O</td>
<td>0,6</td>
<td>J01XB01</td>
<td>Colistine (en MUJ) inhal</td>
<td>3</td>
</tr>
<tr>
<td>J01AA02</td>
<td>Doxycycline O – INJ</td>
<td>0,1</td>
<td>J01XB01</td>
<td>Colistine (en MUJ) INJ</td>
<td>9</td>
</tr>
<tr>
<td>J01AA04</td>
<td>Lymécycline O</td>
<td>0,6</td>
<td>J01XE01</td>
<td>Nitrofurantoin O</td>
<td>0,2</td>
</tr>
<tr>
<td>J01AA08</td>
<td>Minocycline O</td>
<td>0,2</td>
<td>J04AB02</td>
<td>Rifampicine O – INJ</td>
<td>0,6</td>
</tr>
<tr>
<td>J01AA12</td>
<td>Tigecycline O</td>
<td>0,1</td>
<td>A07AA12</td>
<td>Fidaxomicine O</td>
<td>0,4</td>
</tr>
</tbody>
</table>

INJ = voie injectable – O = voie orale
\(^a\) Correspondance MU - gramme pour les médicaments dont le dosage est exprimé en MU en France et la DDJ en grammes : Pénicilline G et V : 1 MU = 0,6 g ; Spiramycine : 1 g = 3,2 MU
\(^b\) Posologie RCP en l’absence de DDJ OMS au 31-12-20
Annexe 4 : Nature du prélèvement

Thésaurus des prélèvements définis à partir des données ONERBA [17]

<table>
<thead>
<tr>
<th>Thésaurus des prélèvements</th>
<th>Intitulé ConsoRes</th>
<th>Types de prélèvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hémoculture</td>
<td></td>
<td>Pédiatrique et adulte</td>
</tr>
<tr>
<td>Urine (à l’exclusion du matériel de sondage)</td>
<td></td>
<td>Examen cytobactériologique des urines</td>
</tr>
<tr>
<td>Dispositif intravasculaire : pas de distinction entre les différents dispositifs (cathéter centraux/périphériques, chambre implantable, ..)</td>
<td></td>
<td>Cathéter Cathéter artériel Cathéter périphérique Cathéter central Cathéter veineux central Cathéter à chambre implantable</td>
</tr>
<tr>
<td>Liquide céphalorachidien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquide pleural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquide articulaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquide d’ascite</td>
<td></td>
<td>Ascite Liquide de dialyse péritonéale</td>
</tr>
<tr>
<td>Prélèvement profond</td>
<td></td>
<td>Liquide péritonéal Liquide péricardique Bile Hématome Pus Humeur vitrée Humeur aqueuse Os Valve Tissu ou matériel prothétique interne, provenant de sites anatomiques clos et normalement stériles et prélevé par ponction ou par chirurgie</td>
</tr>
<tr>
<td>Prélèvement respiratoire protégé ou distal</td>
<td></td>
<td>Brosse bronchique Prélèvement distal protégé Lavage alvéolaire Cathéter protégé</td>
</tr>
<tr>
<td>Prélèvement respiratoire non protégé</td>
<td></td>
<td>Aspiration bronchique Expectoration Aspiration nasopharyngée</td>
</tr>
<tr>
<td>Coproculture (hors dépistage)**</td>
<td></td>
<td>Prélèvement urétral Prélèvement vaginal, cervico-vaginal, endocol, exocol Lochies Sperme</td>
</tr>
<tr>
<td>Prélèvement génital</td>
<td></td>
<td>Liquide gastrique Multi-sites Placenta</td>
</tr>
<tr>
<td>Prélèvement nouveau-né</td>
<td></td>
<td>Liquide de drain, prélèvement sur écouvillon, biopsie, cornée</td>
</tr>
<tr>
<td>Pus superficial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autre prélèvement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 5 : Liste des espèces bactériennes recueillies

<table>
<thead>
<tr>
<th>Espèce bactérienne</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotrophia defectiva</td>
<td>Bacteroides eggerthii</td>
</tr>
<tr>
<td>Abiotrophia spp</td>
<td>Bacteroides fragilis</td>
</tr>
<tr>
<td>Achromobacter denitrificans</td>
<td>Bacteroides ovatus</td>
</tr>
<tr>
<td>Achromobacter spp</td>
<td>Bacteroides spp</td>
</tr>
<tr>
<td>Achromobacter xylosoxidans</td>
<td>Bacteroides thetaiotaomicron</td>
</tr>
<tr>
<td>Acidovorax sp</td>
<td>Bacteroides uniforans</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Bacteroides ureolyticus</td>
</tr>
<tr>
<td>Acinetobacter haemolyticus</td>
<td>Bacteroides vulgatus</td>
</tr>
<tr>
<td>Acinetobacter johnsonii</td>
<td>Bifidobacterium breve</td>
</tr>
<tr>
<td>Acinetobacter junii</td>
<td>Bifidobacterium spp</td>
</tr>
<tr>
<td>Acinetobacter iwoffii</td>
<td>Bordetella avium</td>
</tr>
<tr>
<td>Acinetobacter radioreisists</td>
<td>Bordetella bronchiseptica</td>
</tr>
<tr>
<td>Acinetobacter ursingii</td>
<td>Branhamella catarrhalis</td>
</tr>
<tr>
<td>Actinomycetes bovis</td>
<td>Brevibacterium casei</td>
</tr>
<tr>
<td>Actinomycetes europaeus</td>
<td>Brevundimonas spp</td>
</tr>
<tr>
<td>Actinomycetes israelii</td>
<td>Brucella spp</td>
</tr>
<tr>
<td>Actinomycetes meyeri</td>
<td>Burkholderia cepacia</td>
</tr>
<tr>
<td>Actinomycetes naeslundii</td>
<td>Burkholderia gladioli</td>
</tr>
<tr>
<td>Actinomycetes neuii</td>
<td>Burkholderia spp</td>
</tr>
<tr>
<td>Actinomycetes odontolyticus</td>
<td>Campylobacter coli</td>
</tr>
<tr>
<td>Actinomycetes radingae</td>
<td>Campylobacter fetus</td>
</tr>
<tr>
<td>Actinomycetes spp</td>
<td>Campylobacter jejuni</td>
</tr>
<tr>
<td>Actinomycetes turicensis</td>
<td>Campylobacter rectus</td>
</tr>
<tr>
<td>Actinomycetes viscosus</td>
<td>Campylobacter spp</td>
</tr>
<tr>
<td>Actinotignum schaalii</td>
<td>Campylobacter ureolyticus</td>
</tr>
<tr>
<td>Aerococcus sanguinicola</td>
<td>Capnocytophaga gingivalis</td>
</tr>
<tr>
<td>Aerococcus spp</td>
<td>Capnocytophaga ochracea</td>
</tr>
<tr>
<td>Aerococcus viridans</td>
<td>Capnocytophaga spp</td>
</tr>
<tr>
<td>Aerococcus urinae</td>
<td>Capnocytophaga sputigena</td>
</tr>
<tr>
<td>Aeromonas caviae</td>
<td>Cardiobacterium hominis</td>
</tr>
<tr>
<td>Aeromonas hydrophila</td>
<td>Cellulomonas spp</td>
</tr>
<tr>
<td>Aeromonas sabia</td>
<td>Chlamydia</td>
</tr>
<tr>
<td>Aeromonas spp</td>
<td>Chryseobacterium spp</td>
</tr>
<tr>
<td>Aggregatibacter actinomycetemcomitans</td>
<td>Citrobacter amalonaticus</td>
</tr>
<tr>
<td>Aggregatibacter aphrophilus</td>
<td>Citrobacter braakii</td>
</tr>
<tr>
<td>Aggregatibacter spp</td>
<td>Citrobacter farmeri</td>
</tr>
<tr>
<td>Agrobacterium</td>
<td>Citrobacter freundii</td>
</tr>
<tr>
<td>Alcaligenes faecalis</td>
<td>Citrobacter koseri</td>
</tr>
<tr>
<td>Alcaligenes spp</td>
<td>Citrobacter sedlakii</td>
</tr>
<tr>
<td>Alloiooccus otitis</td>
<td>Citrobacter spp</td>
</tr>
<tr>
<td>Anaerococcus prevotii</td>
<td>Citrobacter werkmanii</td>
</tr>
<tr>
<td>Anaerococcus spp</td>
<td>Citrobacter youngae</td>
</tr>
<tr>
<td>Anaerotruncus spp</td>
<td>Clostridium bifertmentans</td>
</tr>
<tr>
<td>Arcanobacterium bernardiae</td>
<td>Clostridium clostridiiforme</td>
</tr>
<tr>
<td>Arcanobacterium pyogenes</td>
<td>Clostridium difficile</td>
</tr>
<tr>
<td>Arcanobacterium spp</td>
<td>Clostridium innocuum</td>
</tr>
<tr>
<td>Arcobacter butzleri</td>
<td>Clostridium perfringens</td>
</tr>
<tr>
<td>Arcobacter spp</td>
<td>Clostridium ramosum</td>
</tr>
<tr>
<td>Arthrobacter cumminsii</td>
<td>Clostridium sordellii</td>
</tr>
<tr>
<td>Arthrobacter spp</td>
<td>Clostridium sporogenes</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Clostridium spp</td>
</tr>
<tr>
<td>Bacillus mycoides</td>
<td>Clostridium tertium</td>
</tr>
<tr>
<td>Bacillus simplex</td>
<td>Comamonas spp</td>
</tr>
<tr>
<td>Bacillus spp</td>
<td>Comamonas testosteroni</td>
</tr>
<tr>
<td>Bacillus thuringiensis</td>
<td>Corynebacterium amycolatum</td>
</tr>
<tr>
<td>Bacteroides caccae</td>
<td>Corynebacterium aurimucosum</td>
</tr>
<tr>
<td>Bacteroides ulcerans</td>
<td>Corynebacterium diphtheriae</td>
</tr>
<tr>
<td>Bacteroides vulgatus</td>
<td>Corynebacterium lucuronolyticum</td>
</tr>
<tr>
<td>Corynebacterium jeikeium</td>
<td>Corynebacterium minutissimum</td>
</tr>
<tr>
<td>Corynebacterium propioniu</td>
<td>Corynebacterium pseudodiphtheriticum</td>
</tr>
<tr>
<td>Corynebacterium pseudotuberculosis</td>
<td>Corynebacterium simulans</td>
</tr>
<tr>
<td>Corynebacterium striatum</td>
<td>Corynebacterium tuberculostearicum</td>
</tr>
<tr>
<td>Corynebacterium ulcerans</td>
<td>Corynebacterium urealyticum</td>
</tr>
<tr>
<td>Corynebacterium xerosis</td>
<td>Cronobacter sakazakii</td>
</tr>
<tr>
<td>Dermabacter hominis</td>
<td>Cutibacterium acnes</td>
</tr>
<tr>
<td>Eggerthella lenta</td>
<td>Delftia acidovorans</td>
</tr>
<tr>
<td>Eikenella corrodens</td>
<td>Enterobacter aerogenes</td>
</tr>
<tr>
<td>Enterobacter amnigenus</td>
<td>Enterobacter asburiae</td>
</tr>
<tr>
<td>Enterobacter cancerogenus</td>
<td>Enterobacter cloacae</td>
</tr>
<tr>
<td>Enterobacter cloacae complex</td>
<td>Enterobacter hormaechei</td>
</tr>
<tr>
<td>Enterobacter kobei</td>
<td>Enterobacter ludwigi</td>
</tr>
<tr>
<td>Enterobacter necrogenes</td>
<td>Enterobacter nimipressuralis</td>
</tr>
<tr>
<td>Enterobacter spp</td>
<td>Enterococcus avium</td>
</tr>
<tr>
<td>Enterococcus casseliflavus</td>
<td>Enterococcus cecorum</td>
</tr>
<tr>
<td>Enterococcus cloacae</td>
<td>Enterococcus durans</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>Enterococcus faecium</td>
</tr>
<tr>
<td>Enterococcus flavescens</td>
<td>Enterococcus gallinarum</td>
</tr>
<tr>
<td>Enterococcus gilvus</td>
<td>Enterococcus hirae</td>
</tr>
<tr>
<td>Enterococcus pseudoavium</td>
<td>Enterococcus raffinosus</td>
</tr>
<tr>
<td>Enterococcus spp</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Facklamia spp</td>
<td>Escherichia spp</td>
</tr>
<tr>
<td>Flavimonas spp</td>
<td>Eubacterium spp</td>
</tr>
<tr>
<td>Gardnerella vaginalis</td>
<td>Finegoldia magna</td>
</tr>
<tr>
<td>Gemella morbillorum</td>
<td>Flavimonas spp</td>
</tr>
<tr>
<td>Fusobacterium mortiferum</td>
<td>Fusobacterium necrophorum</td>
</tr>
<tr>
<td>Fusobacterium nucleatum</td>
<td>Fusobacterium spp</td>
</tr>
<tr>
<td>Fusobacterium varium</td>
<td>Gardnerella vaginalis</td>
</tr>
<tr>
<td>Gemella morbillorum</td>
<td>Gardnerella vaginalis</td>
</tr>
</tbody>
</table>
Surveillance de la consommation des antibiotiques et de la résistance bactérienne - Mission SPARES

Gemella spp
Granulicatella adiacens
Granulicatella elegans
Granulicatella spp
Haemophilus haemolyticus
Haemophilus influenzae
Haemophilus parahaemolyticus
Haemophilus parainfluenzae
Haemophilus spp
Hafnia alvei
Helcococcus kunzii
Helicobacter pylori
Kingella kingae
Klebsiella oxytoca
Klebsiella pneumoniae
Kluyvera ascorbata
Lactobacillus acidophilus
Lactobacillus casei
Lactobacillus crispatus
Lactobacillus delbrueckii
Lactobacillus iners
Lactobacillus rhamnosus
Lactococcus garvieae
Lactococcus lactis
Lactococcus spp
Leclercia adecarboxylata
Legionella
Leifsonia spp
Listeria monocytogenes
Mannheimia haemolytica
Mannheimia spp
Microbacterium spp
Micromonas micra
Moraxella lacunata
Moraxella nonliquefaciens
Moraxella osloensis
Morganella morganii
Mycobactérie complexe
tuberculosis
Mycoplasma hominis
Myroides spp
Neisseria gonorrhoeae
Neisseria meningitidis
Nocardia farcinica
Nocardia nova
Nocardia spp
Nocardia veterana
Ochrobactrum anthropi
Pandorea spp
Pantoena agglomerans
Pantoena spp
Parabacteroides distasonis
Parivimonas micro
Pasteurella canis
Pasteurella multocida
Peptococcus niger
Peptoniphilus asaccharolyticus
Peptoniphilus spp
Peptostreptococcus anaerobius
Peptostreptococcus spp
Plesiomonas shigelloides
Porphyromonas asaccharolytica
Porphyromonas gingivalis
Porphyromonas spp
Prevotella bivia
Prevotella buccae
Prevotella denticola
Prevotella disiens
Prevotella intermedia
Prevotella melaninogena
Prevotella oralis
Prevotella oris
Prevotella spp
Propionibacterium acnes
Propionibacterium avidum
Propionibacterium propionicum
Propionibacterium spp
Proteus mirabilis
Proteus penneri
Proteus spp
Proteus vulgaris
Providencia rettgeri
Providencia spp
Providencia stuartii
Pseudoflavonifractor capillosus
Pseudomonas aeruginosa
Pseudomonas fluorescens
Pseudomonas putida
Pseudomonas spp
Pseudomonas stutzeri
Ralstonia spp
Raoulitella ornithinolytica
Raoulitella planticola
Raoulitella spp
Rhodobium spp
Rhodococcus spp
Roseomonas spp
Salmonella Enteritidis
Salmonella ser. Paratyphi A
Salmonella ser. Paratyphi B
Salmonella spp
Salmonella Typhimurium
Serratia fonticola
Serratia liquefaciens
Serratia marcescens
Serratia spp
Shigella spp
Sphingobacterium spp
Sphingomonas paucimobilis
Staphylococcus aureus
Staphylococcus auricularis
Staphylococcus capitis
Staphylococcus caprae
Staphylococcus cohnii
Staphylococcus epidermidis
Staphylococcus haemolyticus
Staphylococcus hominis
Staphylococcus intermedius
Staphylococcus lugdunensis
Staphylococcus pasteuri
Staphylococcus pseudintermedius
Staphylococcus saccharolyticus
Staphylococcus saprophyticus
Staphylococcus schleiferi
Staphylococcus simulans
Staphylococcus spp
Staphylococcus warneri
Staphylococcus xylosus
Stenotrophomonas maltophilia
Streptococcus agalactiae (B)
Streptococcus alactolyticus
Streptococcus anginosus
Streptococcus constellatus
Streptococcus dysgalactiae (G)
Streptococcus equi
Streptococcus gallolyticus
Streptococcus gordonii
Streptococcus infantarius
Streptococcus intermedium
Streptococcus mitis
Streptococcus mutans
Streptococcus oralis
Streptococcus parasanguinis
Streptococcus pneumoniae
Streptococcus porcinus
Streptococcus pseudopneumoniae
Streptococcus pyogenes (A)
Streptococcus salivarius
Streptococcus sanguinis
Streptococcus sanguis
Streptococcus spp
Streptococcus suis
Streptococcus vestibularis
Streptococcus zooepidemicus
Tsukamurella spp
Turicella oitidis
Ureaplasma urealyticum
Veillonella parvula
Veillonella spp
Vibrio alginolyticus
Vibrio cholerae
Vibrio parahaemolyticus
Vibrio spp
Weekella spp
Xanthomonas spp
Yersinia enterocolitica
Yersinia spp
Annexe 6 : Dictionnaire des variables recueillies

<table>
<thead>
<tr>
<th>Format des cellules</th>
<th>Renseignement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obligatoire</td>
</tr>
</tbody>
</table>

Données de structure de l’établissement - actualisation lors de changements uniquement

<table>
<thead>
<tr>
<th>Code UF</th>
<th>Alphanumérique</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libellé UF</td>
<td>Texte</td>
<td>X</td>
</tr>
<tr>
<td>Code service</td>
<td>Alphanumérique</td>
<td>X</td>
</tr>
<tr>
<td>Libellé service</td>
<td>Texte</td>
<td>X</td>
</tr>
<tr>
<td>Code pôle</td>
<td>Alphanumérique</td>
<td>X</td>
</tr>
<tr>
<td>Libellé pôle</td>
<td>Texte</td>
<td>X</td>
</tr>
<tr>
<td>Code DE (discipline d’équipement)</td>
<td>Numérique</td>
<td>Liste</td>
</tr>
<tr>
<td>Code TA (type d’activité)</td>
<td>Numérique</td>
<td>Liste</td>
</tr>
</tbody>
</table>

Données d’activité (journées d’hospitalisation) - actualisation annuelle

<table>
<thead>
<tr>
<th>Code UF</th>
<th>Alphanumérique</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de journées d’hospitalisation</td>
<td>Numérique</td>
<td>Nombre entier</td>
</tr>
</tbody>
</table>

Données de consommation d’antibiotiques - actualisation annuelle

<table>
<thead>
<tr>
<th>Code UF</th>
<th>Alphanumérique</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code UCD</td>
<td>Numérique</td>
<td>7 ou 13 chiffres</td>
</tr>
<tr>
<td>Quantité consommée</td>
<td>Numérique</td>
<td>Nombre entier positif</td>
</tr>
</tbody>
</table>

Données de résistance bactérienne aux antibiotiques - actualisation annuelle

<table>
<thead>
<tr>
<th>Code UF</th>
<th>Alphanumérique</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° Patient</td>
<td>Alphanumérique</td>
<td>X</td>
</tr>
<tr>
<td>Date de naissance/Âge</td>
<td>Numérique ou Date</td>
<td>date de naissance (J/J/MM/AAAA) ou Age en années</td>
</tr>
<tr>
<td>Date admission</td>
<td>Date</td>
<td>J/J/MM/AAAA</td>
</tr>
<tr>
<td>Date prélèvement</td>
<td>Date</td>
<td>J/J/MM/AAAA</td>
</tr>
<tr>
<td>Nature du prélèvement</td>
<td>Texte</td>
<td>Liste en annexe 4</td>
</tr>
<tr>
<td>Espèce bactérienne</td>
<td>Texte</td>
<td>Liste en annexe 5</td>
</tr>
<tr>
<td>BLSE (Entérobactéries)</td>
<td>Texte</td>
<td>O (si production)</td>
</tr>
<tr>
<td>Céphalosporinase déréprimée/ haut niveau (Entérobactéries)</td>
<td>Texte</td>
<td>O (si production)</td>
</tr>
<tr>
<td>Carbapénémase (Entérobactéries)</td>
<td>Texte</td>
<td>O (si production)</td>
</tr>
<tr>
<td>Antibiotiques</td>
<td>Texte</td>
<td>S, I ou R</td>
</tr>
<tr>
<td>Nombre total de sets d’hémocultures</td>
<td>Numérique</td>
<td>X</td>
</tr>
<tr>
<td>Référentiel de bactériologie</td>
<td>Menu déroulant</td>
<td>X</td>
</tr>
</tbody>
</table>

Données administratives - actualisation annuelle

| Nombre de lits | Numérique | X |

Questionnaire COVID-19

Patients COVID pris en charge au cours de la période	Case à cocher	oui/non	X
Si oui, nombre de patients concernés	Texte/case à cocher	Saisie libre ou ‘ne sait pas’	X
Si oui, secteur(s) d’activité d’hospitalisation de ces patients	Cases à cocher	X	

^a : les phénotypes de résistance BLSE, céphalosporinase déréprimée/haut niveau et carbapénémase des entérobactéries doivent être renseignés si positifs et après vérification. Une case vide est considérée comme une absence de phénotypes de résistance.
Annexe 7 : Liste des indicateurs de résistance inclus dans le rapport automatique et modalités de calcul

Liste des indicateurs de résistance inclus dans le rapport automatique et modalités de calcul

<table>
<thead>
<tr>
<th>Bactéries</th>
<th>Calcul</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>1) Elimination des doublons : même souche bactérienne (même N° patient, même antibiotype) dans un prélèvement urinaire et dans un prélèvement pulmonaire → ne compter qu’un prélèvement et garder le plus ancien</td>
</tr>
<tr>
<td>E. coli</td>
<td>2) Calcul (Nombre de souches I + nombre de souches R à l’antibiotique testé) / (nombre total de souches (S+I+R)) X 100</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>La liste des antibiotiques testés en fonction de la bactérie est précisée ci-dessous</td>
</tr>
<tr>
<td>E. cloacae complex</td>
<td>Concernant les fluoroquinolones et les C3G, voir le détail du calcul ci-dessous</td>
</tr>
<tr>
<td>E. faecium</td>
<td></td>
</tr>
<tr>
<td>E. faecalis</td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
</tr>
<tr>
<td>A. baumannii</td>
<td></td>
</tr>
</tbody>
</table>

Pourcentages de résistance

<table>
<thead>
<tr>
<th>Pourcentages de résistance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SARM</td>
<td>1) Elimination des doublons ou sélection d’un seul type de prélèvement en particulier (EX : hémoculture)</td>
</tr>
<tr>
<td>BLSE : toutes entérobactéries confondues, E. coli, K. pneumoniae, E. cloacae complex</td>
<td>2) Calcul (SARM) (Nombre de souches de S. aureus R à l'oxacilline) / (nombre total de souches de S. aureus (S+I+R)) X 100</td>
</tr>
<tr>
<td>Carbapénémase</td>
<td>3) Calcul (BLSE) (Nombre de souches d'entérobactéries avec phénotype BLSE/ nombre total de souches d'entérobactéries) X 100</td>
</tr>
<tr>
<td>ERV</td>
<td></td>
</tr>
</tbody>
</table>

Pourcentage de BMR cibles

<table>
<thead>
<tr>
<th>Pourcentage de BMR cibles (total et par prélèvement)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SARM</td>
<td>1) Sélection du prélèvement "Hémoculture“</td>
</tr>
<tr>
<td>BLSE : total, E. coli, K. pneumoniae, E. cloacae complex</td>
<td>2) calculs : similaires à l’incidence (voir ci-dessus)</td>
</tr>
<tr>
<td>Carbapénémase</td>
<td></td>
</tr>
<tr>
<td>ERV</td>
<td></td>
</tr>
</tbody>
</table>

Incidence

<table>
<thead>
<tr>
<th>Incidence des bactériémies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SARM</td>
<td>1) Sélection du prélèvement "Hémoculture“</td>
</tr>
<tr>
<td>BLSE : total, E. coli, K. pneumoniae, E. cloacae complex</td>
<td>2) calculs : similaires à l’incidence (voir ci-dessus)</td>
</tr>
</tbody>
</table>

Incidence des bactériémies de survenue ≥ 48h

<table>
<thead>
<tr>
<th>Incidence des bactériémies de survenue ≥ 48h</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SARM</td>
<td>1) Sélection du prélèvement "Hémoculture“</td>
</tr>
<tr>
<td>BLSE : E. coli, K. pneumoniae, E. cloacae complex</td>
<td>2) (date de prélèvement - date d'admission) ≥ 48h</td>
</tr>
<tr>
<td></td>
<td>3) calculs : similaires à l’incidence (voir ci-dessus)</td>
</tr>
</tbody>
</table>
Pour chaque espèce ci-dessous, un tableau récapitulatif comportant la sensibilité aux antibiotiques suivant est généré :

- **Staphylococcus aureus** : méticilline, kanamycine gentamicine, tobramycine, érythromycine, pristinamycine, triméthoprime-sulfaméthoxazole, rifampicine, fosfomycine, acide fusidique, vancomycine, fluoroquinolones*;
- **Escherichia coli, Klebsiella pneumoniae et Enterobacter cloacae complex** : amoxicilline-acide clavulanique, pipéracilline-tazobactam, céfotaxime, ceftriaxone, ceftazidime, C3G***, céfépime, imipénème, gentamicine, amikacine, acide nalidixique, ciprofloxacine, ofloxacine/lévofloxacine, quinolones**, triméthoprime-sulfaméthoxazole, nitrofurantoin, fosfomycine;
- **Enterococcus faecium** et **Enterococcus faecalis** : ampicilline, gentamicine, nitrofurantoin, teicoplanine, vancomycine ;
- **Pseudomonas aeruginosa** : ticarcilline, pipéracilline-tazobactam, ceftazidime, céfépime, imipénème, méropénème, amikacine, ciprofloxacine ;
- **Acinetobacter baumannii** : ticarcilline, pipéracilline-tazobactam, imipénème, gentamicine, amikacine, ciprofloxacine.

* Fluoroquinolones : norfloxacine, lévofloxacine, ofloxacine, moxifloxacine et ciprofloxacine (voir calcul ci-après)
** Quinolones : norfloxacine, acide nalidixique, lévofloxacine, ofloxacine, moxifloxacine et ciprofloxacine (voir calcul ci-après)
*** C3G : céfotaxime, ceftazidime et ceftriaxone (voir calcul ci-après)

Calcul des indicateurs de résistance aux FQ et C3G inclus dans le rapport automatique

<table>
<thead>
<tr>
<th>Groupe d’antibiotiques</th>
<th>Antibiotiques considérés</th>
<th>Calcul</th>
<th>Résultat rendu</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>Norfloxacine, Lévofoxacine, Ofloxacine, Moxifloxacine, Ciprofloxacine</td>
<td>Au moins une molécule sur les 5 est rendue I ou R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aucune fluoroquinolone n’est renseignée</td>
<td>vide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autres situations</td>
<td>S</td>
</tr>
<tr>
<td>E. coli, K. pneumoniae, E. cloacae complex</td>
<td>Norfloxacine, Acide Nalidixique, Lévofoxacine, Ofloxacine, Moxifloxacine, Ciprofloxacine</td>
<td>Au moins une molécule sur les 6 est rendue I ou R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aucune fluoroquinolone n’est renseignée</td>
<td>vide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autres situations</td>
<td>S</td>
</tr>
<tr>
<td>C3G</td>
<td>Céfotaxime, Ceftazidime, Ceftriaxone</td>
<td>Au moins une molécule sur les 3 est rendue I ou R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aucune C3G n’est renseignée</td>
<td>Vide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autres situations</td>
<td>S</td>
</tr>
<tr>
<td>Ofloxacine/Lévofoxacine</td>
<td>Ofloxacine, Lévofoxacine</td>
<td>Au moins une molécule sur les 2 est rendue I ou R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aucune des 2 fluoroquinolones n’est renseignée</td>
<td>vide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autres situations</td>
<td>S</td>
</tr>
</tbody>
</table>
Annexe 8 : Calendrier de la surveillance 2021

<table>
<thead>
<tr>
<th></th>
<th>Janv</th>
<th>Fev</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
<th>Août</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Déc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Année des données</td>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>Date limite d’import des données dans l’outil ConsoRes</td>
<td></td>
<td></td>
<td></td>
<td>31/03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validation des données</td>
<td></td>
</tr>
<tr>
<td>Envoi du rapport automatique (ES)</td>
<td></td>
</tr>
<tr>
<td>Validation Tableaux de bord régionaux</td>
<td></td>
</tr>
<tr>
<td>Validation Rapport national</td>
<td></td>
</tr>
</tbody>
</table>